手套箱厂家-伊特克斯惰性气体系统(北京)有限公司欢迎您!公司电话:400 086 8156

手套箱

菜单

搜索

解决方案 Application

解决方案 Application

首页 > 解决方案 > 固态电池

2024-03-18 固态电池 固态电池 返回

固态电池生产工艺

锂电池、钠电池、固态电池的区别

在新能源汽车行业,除了动力电池技术的发展外,关于锂电池、钠电池、固态电池等储能技术也是备受关注的话题。随着新能源汽车的快速发展,储能市场也迅速壮大,吸引了众多新能源企业和资本涌入,储能领域的技术进步也对相关企业带来了巨大的利好。


那么锂电池、钠电池、固态电池有何不同?它们分别有哪些优势?未来发展前景如何?今天我们就来了解一下锂电池、钠电池、固态电池之间的区别。

首先我们来了解一下锂离子电池。锂离子电池是目前使用最广泛的一种储能技术,其主要由正负极材料、电解质溶液、隔膜以及电解液添加剂等组成。

图片

锂电池

锂电池是一种由锂金属或锂合金为负极材料、使用有机电解液的固体或液体电池。由于其具有高能量密度、高比容量、高自放电率、长循环寿命等优点,在新能源汽车领域得到了广泛应用,例如在电动自行车中的应用。

图片

锂电池的优点是能量密度高,相同体积的情况下,其所能储存的电量是铅酸电池的2倍;但是锂电池的缺点也很明显,其不能承受过高的温度。当温度超过50℃时,就会发生爆炸;当温度超过80℃时,会发生自燃。此外锂电池在低温状态下充放电效率较低,因此在低温环境下使用的新能源汽车需要配备专门的充电设备。

目前主流应用于电动汽车领域的锂电池主要有三元锂电池、锰酸锂电池等。其中三元锂电池在能量密度、循环寿命方面具有优势,是当前最成熟、使用最广泛的一种动力电池类型。但由于其原材料价格高,成本也相应增加,在一定程度上限制了其发展。

钠电池

钠离子电池,是一种新型的储能技术,相比于锂电池,其原材料成本更低、安全性更好、能量密度更高。钠离子电池的工作原理与锂离子电池的工作原理相似,但不同点在于钠离子电池使用了更为稳定的正极材料——普鲁士蓝,这也是目前最具潜力的正负极材料。

普鲁士蓝主要应用于锂电领域,钠离子电池主要应用于储能领域。它的优势在于成本低、能量密度高,同时具有安全性好、循环寿命长等特点,可应用于便携式电子产品、电动自行车等领域。不过在实际应用中,由于钠离子电池正极材料稳定性不强,会出现正负极材料分离的情况,因此钠离子电池在倍率性能和循环寿命上仍有待进一步提升。目前钠离子电池还处在技术开发和试验阶段,尚未进入大规模生产阶段。

固态电池

固态电池是一种新型电池,与传统锂电池相比,它具有高能量密度、高安全、长寿命和高低温适应性强等优势。

图片

目前固态电池技术正在不断推进,随着新能源汽车的普及,固态电池也将迎来新一轮发展机遇。固态电池作为储能电池的一种,可以提高锂离子电池的能量密度,同时能够延长电池的使用寿命,也不会产生明显的安全隐患。另外,固态电池还可以降低生产成本和降低碳排放。

从发展前景来看,固态锂离子电池技术是未来几年内最有可能实现大规模应用的储能技术,但在技术发展过程中仍面临着一些挑战。

一方面是技术门槛较高;另一方面是材料成本较高。

根据有关数据显示,目前全球有超过70%的固态锂离子电池技术研发企业正在进行相关研发工作。相信随着科研人员不断努力,在不久的将来会有更多的储能技术问世。

固态电解质

固态电池是指采用固态电解质的锂离子电池,其核心材料是固体电解质。与液态锂离子电池相比,固态电池具有高安全性、高能量密度、高稳定性等优点,但由于目前固态电解质的制备方法尚未成熟,其实际应用仍存在诸多挑战。

目前固态电池主要存在以下几个难点:

  一是制备过程中所用的材料成本较高;

  二是制备工艺复杂,需要对电极材料和电解质进行特殊的加工处理,导致电池的生产成本较高;

  三是在实际应用中需要对电极材料进行改性处理,以避免其与电解液发生反应;

  四是由于固体电解质与液态电解液的密度不同,需要在电极中添加额外的添加剂;

  五是固态电解质的电极与电解液之间会发生反应,可能会出现电化学性能下降等问题。

钠硫电池

钠电池又被称为“二代钠电池”,是一种新型的二次电池。与锂离子电池相比,钠离子电池的优势主要体现在以下两个方面:

(1)钠离子具有较高的质量和体积能量密度,与锂离子电池相比,每千克钠的质量能量密度高达250 Wh/kg,体积能量密度可达到400 Wh/L以上;

(2)钠离子具有较低的电位,理论上其比容量可达到2140 mAh/g。这使得钠电池可以在很多方面取代锂电池的应用,比如高倍率放电、大倍率充放电、长时间循环使用等。

图片

但由于钠资源有限且分布不均衡,导致其在储能领域的应用受到限制。不过随着科技进步和新能源技术的发展,相信钠硫电池这一新型二次电池将会被更广泛地应用在新能源汽车领域。

钠离子电池

钠离子电池(简称钠电),与锂离子电池的工作原理类似,但其工作环境和温度范围与锂离子电池更为接近。钠离子电池是一种新型的电池,其原理与锂电池类似。不同之处在于,钠离子电池是利用钠作为正极材料来储存和释放钠离子,而锂离子电池是利用锂作为正极材料来储存和释放锂离子。此外,钠离子电池还具有低成本、低温性能好、资源丰富等优势。

图片

由于钠资源广泛分布于地壳中,且储量丰富,因此未来发展前景较好。不过由于钠的化学性质比较活泼,其在循环过程中容易发生副反应,造成电池循环寿命缩短和容量损失等问题,因此发展钠电池仍需重点解决材料稳定和循环寿命等问题。目前已有多家企业对钠离子电池展开了研究,如中科海钠、中科海纳、国轩高科等。但由于钠电的成本较高、安全性较差等原因,目前尚没有商业化应用。

未来发展前景

锂电池、钠电池、固态电池,都是当下储能领域中的热门技术。其中钠电池是一种新型的二次电池,具有价格低、安全性好、储量丰富等优势。在未来,随着对钠资源的开发,以及相关技术的发展,钠电池将会迎来快速发展。

固态电池则是一种新型的二次电池,能够实现充放电循环性能的提高,并且在安全性和能量密度上都能取得良好效果。当前固态电池技术正在稳步推进中,相信随着技术的不断进步,其在未来将会得到更广泛的应用。

全固态锂离子电池关键材料

全固态锂离子电池采用固态电解质替代传统有机液态电解液,有望从根本主解决电池安全性问题,是电动汽车和规模化储能理想的化学电源。

  其关键主要包括制备高室温电导率和电化学稳定性的固态电解质以及适用于全固态锂离子电池的高能量电极材料、改善电极/固态电解质界面相容性。

  全固态锂离子电池的结构包括正极、电解质、负极,全部由固态材料组成,与传统电解液锂离子电池相比具有的优势有:

  ①完全消除了电解液腐蚀和泄露的安全隐患,热稳定性更高;

  ②不必封装液体,支持串行叠加排列和双极结构,提高生产效率;

  ③由于固体电解质的固态特性,可以叠加多个电极;

  ④电化学稳定窗口宽(可达5V以上),可以匹配高电压电极材料:

  ⑤固体电解质一般是单离子导体,几乎不存在副反应,使用寿命更长。

  固态电解质

  聚合物固态电解质

  聚合物固态电解质(SPE),由聚合物基体(如聚酯、聚酶和聚胺等)和锂盐(如LiClO4、LiAsF4、LiPF6、LiBF4等)构成,因其质量较轻、黏弹性好、机械加工性能优良等特点而受到了广泛的关注。发展至今,常见的SPE包括聚环氧乙烷(PEO)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)、聚甲基丙烯酸甲酯(PMMA)、聚环氧丙烷(PPO)、聚偏氯乙烯(PVDC)以及单离子聚合物电解质等其它体系。

  目前,主流的SPE基体仍为最早被提出的PEO及其衍生物,主要得益于PEO对金属锂稳定并且可以更好地解离锂盐。然而,由于固态聚合物电解质中离子传输主要发生在无定形区,而室温条件下未经改性的PEO的结晶度高,导致离子电导率较低,严重影响大电流充放电能力。

  研究者通过降低结晶度的方法提高PEO链段的运动能力,从而提高体系的电导率,其中最为简单有效的方法是对聚合物基体进行无机粒子杂化处理。目前研究较多的无机填料包括MgO、Al2O3、SiO2等金属氧化物纳米颗粒以及沸石、蒙脱土等,这些无机粒子的加入扰乱了基体中聚合物链段的有序性,降低了其结晶度,聚合物、锂盐以及无机粒子之间产生的相互作用增加了锂离子传输通道,提高电导率和离子迁移数。无机填料还可以起到吸附复合电解质中的痕量杂质(如水分)、提高力学性能的作用。

  为了进一步提高性能,研究者开发出一些新型的填料,其中由不饱和配位点的过渡金属离子和有机连接链(一般为刚性)进行自组装,形成的金属有机框架(MOF)因其多孔性和高稳定性而受到关注。

  氧化物固态电解质

  按照物质结构可以将氧化物固态电解质分为晶态和玻璃态(非晶态)两类,其中晶态电解质包括钙钛矿型、NASICON型、LISICON型以及石榴石型等,玻璃态氧化物电解质的研究热点是用在薄膜电池中的LiPON型电解质。

  氧化物晶态固体电解质

  氧化物晶态固体电解质化学稳定性高,可以在大气环境下稳定存在,有利于全固态电池的规模化生产,目前的研究热点在于提高室温离子电导率及其与电极的相容性两方面。目前改善电导率的方法主要是元素替换和异价元素掺杂。另外,与电极的相容性也是制约其应用的重要问题。

  LiPON型电解质

  1992年,美国橡树岭国家实验室(ORNL)在高纯氮气气氛中采用射频磁控溅射装置溅射高纯Li3P04靶制备得到锂磷氧氮(LiPON)电解质薄膜。

  该材料具有优秀的综合性能,室温离子导电率为2.3x10-6S/cm,电化学窗口为5.5V(vs.Li/Li+),热稳定性较好,并且与LiCoO2,、LiMn2O4等正极以及金属锂、锂合金等负极相容性良好。LiPON薄膜离子电导率的大小取决于薄膜材料中非晶态结构和N的含量,N含量的增加可以提高离子电导率。普遍认为,LiPON是全固态薄膜电池的标准电解质材料,并且已经得到了商业化应用。

  射频磁控溅射的方法可以制备出大面积且表面均匀的薄膜,但同时存在着较难控制薄膜组成、沉积速率小的缺点,因此,研究者尝试采用其它方法制备LiPON薄膜,如脉冲激光沉积、电子束蒸发以及离子束辅助真空热蒸发等。

  除了制备方法的改变,元素替换和部分取代的方法也被研究者用来制备出多种性能更加优异的LiPON型非晶态电解质。

  硫化物晶态固体电解质

  最为典型的硫化物晶态固体电解质是thio-LISICON,由东京工业大学的KANNO教授最先在Li2S-GeS2-P2S,体系中发现,化学组成为Li4-xGe1-xPxS4,室温离子电导率最高达2.2x10-3S/cm(其中x=0.75),且电子电导率可忽略。thio-LISICON的化学通式为Li4-xGe1-xPxS4(A=Ge、Si等,B=P、A1、Zn等)。

  硫化物玻璃及玻璃陶瓷固体电解质

  玻璃态电解质通常由P2S5、SiS2、B2S3等网络形成体以及网络改性体Li2S组成,体系主要包括Li2S-P2S5、Li2S-SiS2、Li2S-B2S3,组成变化范围宽,室温离子电导率高,同时具有热稳定高、安全性能好、电化学稳定窗口宽(达5V以上)的特点,在高功率以及高低温固态电池方面优势突出,是极具潜力的固态电池电解质材料。

  日本大阪府立大学TATSUMISAGO教授对Li2S-P2S5电解质的研究处于世界前沿位置,他们最先发现对Li2S-P2S5玻璃进行高温处理使其部分晶化形成玻璃陶瓷,在玻璃基体中沉积出的晶体相使得电解质的电导率得到很大提升。

  全固态电池电极材料

  虽然固态电解质与电极材料界面基本不存在固态电解质分解的副反应,但是固体特性使得电极/电解质界面相容性不佳,界面阻抗太高严重影响了离子的传输,最终导致固态电池的循环寿命低、倍率性能差。

  另外,能量密度也不能满足大型电池的要求。对于电极材料的研究主要集中在两个方面:

  一是对电极材料及其界面进行改性,改善电极/电解质界面相容性;

  二是开发新型电极材料,从而进一步提升固态电池的电化学性能。

  正极材料

  全固态电池正极一般采用复合电极,除了电极活性物质外还包括固态电解质和导电剂,在电极中起到传输离子和电子的作用。LiCoO2、LiFePO4、LiMn2O4等氧化物正极在全固态电池中应用较为普遍。

  当电解质为硫化物时,由于化学势相差较大,氧化物正极对Li+的吸引大大强于硫化物电解质,造成Li+大量移向正极,界面电解质处贫锂。若氧化物正极是离子导体,则正极处也同样会形成空间电荷层,但如果正极为混合导体(如LiCoO2等既是离子导体,又是电子导体),氧化物处Li+浓度被电子导电稀释,空间电荷层消失,此时硫化物电解质处的Li+再次移向正极,电解质处的空间电荷层进一步增大,由此产生影响电池性能的非常大的界面阻抗。

  在正极与电解质之间增加只有离子导电氧化物层,可以有效抑制空间电荷层的产生,降低界面阻抗。此外,提高正极材料自身的离子电导率,可以达到优化电池性能、提高能量密度的目的。

  为了进一步提高全固态电池的能量密度及电化学性能,人们也在积极研究和开发新型高能量正极,主要包括高容量的三元正极材料和5V高电压材料等。三元材料的典型代表是LiNi1-x-yCoxMnyO2(NCM)和LiNi1-x-yCoxA1yO2(NCA),均具有层状结构,且理论比容量高。

  与尖晶石LiMn2O4相比,5V尖晶石LiNi0.5Mn1.5O4具有更高的放电平台电压(4.7V)和倍率性能,因此成为全固态电池正极有力的候选材料。

  除了氧化物正极,硫化物正极也是全固态电池正极材料一个重要组成部分,这类材料普遍具有高的理论比容量,比氧化物正极高出几倍甚至一个数量级,与导电性良好的硫化物固态电解质匹配时,由于化学势相近,不会造成严重的空间电荷层效应,得到的全固态电池有望实现高容量和长寿命的实周要求。然而,硫化物正极与电解质的固固界面仍存在接触不良、阻抗高、无法充放电等问题。

  负极材料

  金属Li负极材料

  因其高容量和低电位的优点成为全固态电池最主要的负极材料之一,然而金属Li在循环过程中会有锂枝晶的产生,不但会使可供嵌/脱的锂量减少,更严重的是会造成短路等安全问题。另外,金属Li十分活泼,容易与空气中的氧气和水分等发生反应,并且金属Li不能耐高温,给电池的组装和应用带来困难。

  加入其它金属与锂组成合金是解决上述问题的主要方法之一,这些合金材料一般都具有高的理论容量,并且金属锂的活性因其它金属的加入而降低,可以有效控制锂枝晶的生成和电化学副反应的发生,从而促进了界面稳定性。锂合金的通式是LixM,其中M可以是In、B、Al、Ga、Sn、Si、Ge、Pb、As、Bi、Sb、Cu、Ag、Zn等。

  然而,锂合金负极存在着一些明显的缺陷,主要是在循环过程中电极体积变化大,严重时会导致电极粉化失效,循环性能大幅下降,同时,由于锂仍然是电极活性物质,所以相应的安全隐患仍存在。

  目前,可以改善这些问题的方法主要包括合成新型合金材料、制备超细纳米合金和复合合金体系(如活性/非活性、活性/洁性、碳基复合以及多孔结构)等。

  碳族负极材料

  碳组的碳基、硅基和锡基材料是全固态电池另一类重要的负极材料。碳基以石墨类材料为典型代表,石墨碳具有适合于锂离子嵌入和脱出的层状结构,具有良好的电压平台,充放电效率在90%以上,然而理论容量较低(仅为372mAh/g)是这类材料最大的不足,并且目前实际应用己经基本达到理论极限,无法满足高能量密度的需求。最近,石墨烯、碳纳米管等纳米碳作为新型碳材料出现在市场上,可以使电池容量扩大到之前的2-3倍。

  氧化物负极材料

  主要包括金属氧化物、金属基复合氧化物和其他氧化物。典型的烟花无负极材料有:TiO2、MoO2、In2O3、Al2O3、Cu2O、VO2、SnOx、SiOx、Ga2O3、Sb2O5、BiO5等,这些氧化物均具有较高的理论比容量,然而在从氧化物中置换金属单质的过程中,大量的Li被消耗,造成巨大的容量损失,并且循环过程中伴随着巨大的体积变化,造成电池的失效,通过与碳基材料的复合可以改善这一问题。

  结论

  目前最有可能被应用到全固态锂离子电池中的固态电解质材料包括PEO基聚合物电解质、NASICON型和石榴石氧化物电解质、硫化物电解质。

  在电极方面,除了传统的过渡金属氧化物正极、金属锂、石墨负极之外,一系列高性能正、负极材料也在不断开发,包括高电压氧化物正极、高容量硫化物正极、稳定性良好的复合负极等。

  但仍有问题亟待解决:

  (1)PEO基聚合物电解质的电导率仍然较低,导致电池倍率和低温性能不佳,另外与高电压正极相容性差,具有高电导率且耐高压的新型聚合物电解质有待开发;

  (2)为了实现全固态电池的高储能长寿命,对新型高能量、高稳定性正、负极材料的开发势在必行,高能量电极材料与固态电解质的最佳组合及安全性需要确认。

  (3)全固态电池中电极/电解质固固界面一直存在比较严重的问题,包括界面阻抗大、界面稳定性不良、界面应力变化等,直接影响电池的性能。

  虽然存在诸多问题,总体来说,全固态电池的发展前景是非常光明的,在未来替代现有锂离子电池成为主流储能电源也是大势所趋。

自20世纪90年代以来,锂离子电池已发展成为最成熟、应用最广泛的电池技术路线。随着市场对电池能量密度、安全性、经济性等方面要求的日益提升,传统锂离子电池已逐渐不能满足需求。采用固体电极和固态电解质且具备更高能量密度和安全性的“固态电池”便应运而生。

固态电池有多方面优势,比如固态电解质的结构和密度可以聚集更多带电离子、传导更大电流,而且可以采用金属锂等材料做负极,以提升单位体积的电池容量和续航能力;固态电解质的封存相对简便,能够节省成本,减轻电池体积,更加轻便;固态电解质化学结构稳定,可以减小电池在高温下的化学反应和爆炸风险,电池性能更稳定。

传统锂离子电池包括正极、负极、电解液、隔膜四大组成部分,固态电池将电解液换成固态电解质。固态电池较之传统锂离子电池,关键区别在于电解质由液体变为固体,兼顾安全性、高能量密度等性能。

图片

对于固态电池,其生产工艺需要在电极、电解质、界面工程及封装技术等方面进行突破,生产工艺性的优化提升是实现固态电池工程化和商用应用的重要组成部分。与传统液态锂离子电池相比,固态电池的前段工序基本与液态锂离子电池相同,中、后段工序上,固态电池需要加压或者烧结,不需要注液化成。

图片

传统液态软包锂电池生产工艺

固态电池可以分为聚合物固态电池、硫化物固态电池、氧化物固态电池及薄膜固态电池等不同的电池体系。整个固态电池的生产流程中,电解质成膜工艺是关键工艺。不同的工艺会影响固体电解质膜的厚度和离子电导率,固体电解质膜过厚会降低全固态电池的质量能量密度和体积能量密度,同时也会提高电池的内阻。相反,固体电解质膜过薄机械性能会变差,有可能引起短路。通过几十年的研究,在材料开发方面,不同类型的固态电解质(聚合物、氧化物、硫化物等)已经能够被成功地合成制备出来。

电解质成膜工艺作为固态电池的核心工艺,可分为干法工艺与湿法工艺两大类。除干法与湿法两种工艺外,还可以通过化学气相沉积、物理气相沉积、电化学气相沉积和真空溅射的气相法制备固体电解质膜。但是气相方法的制备成本较高,只适用于薄膜固态电池

图片

固态电池干法/湿法生产工艺比较

对于聚合物固态电池制备,均使用涂布的方法制备复合聚合物固体电解质正极层和聚合物固体电解质中间层,层压为聚合物固态电池。电极片与现有的液态电池制备方式类似,兼容现有产线。


以亚琛工业大学研究机构PEM的聚合物固态电池制备工艺为例,正极和固态电池电解质材料的制备平行进行,通过高温熔化和返混挤出的过程形成正极和电解质浆料。两种浆料通过一起挤出的方式,分别叠加在正极集流体材料上。之后,再将金属锂压制成浆料后涂布在电解质材料的表面,形成集流体-正极材料-固态电解质-锂负极的混合多层电芯。最后,通过辊压法,把多层电芯压实。

图片

聚合物固态电池电极、电解质制备

将制备好的电芯裁剪成固定尺寸,依照不同需求,将电芯依照串并联的方式叠放在一起。之后,对叠放好的电芯进行压实和封装,经过化成和老化工序,制作完成。然后,对电池进行测试和评级。

图片

聚合物固态电池制备流程

对于聚合物固态电池生产工艺,其特点在于,通过干法和湿法工艺均可制备复合固态正极和聚合物电解质层,电池组装通过电极与电解质间的卷对卷复合实现;干法和湿法都非常成熟,都易于制备大电芯;易于制备出双极内串电芯。但是聚合物固态电池制备工艺也存在一定问题,例如成膜均一性难以控制;难以兼容高电压正极材料,导致能量密度不高;受醚类聚合物电解质材料限制,电池往往在高温下才能工作等。

硫化物固态电池

图片

图片

硫化物固态电池干法工艺

对于硫化物固态电池干法工艺,其技术优势包括节省去溶剂工艺制备成本及节约制备周期;无其他物质(溶剂)对电解质的影响;干法电池性能更稳定。但硫化物固态电池干法工艺也存在技术劣势,如制备大容量电池困难;电解质层厚度较厚,阻抗较高;粉末压实需要较高平压压强(10t/cm2)等。

氧化物固态电池

对于氧化物固态电池制备,以德国RWTH PEM制备工艺为例。电池正极和固态电池电解质材料的制备通过球磨的方式分别进行;使用高频溅射法,将固态电池溅射到正极材料表面;将复合好的正极-电解质材料进行高温烧结;通过电子束蒸发法将负极分布到电解质材料上。

图片

氧化物固态电池制备流程

薄膜固态电池

以日本ULVAC的LIPON薄膜全固态电池为例,其LIPON非晶氧化物固态电解质,1992年由美国橡树岭实验室通过射频磁控溅射Li3PO4靶材制备。正极集流体、正极、LIPON、负极集流体、金属锂负极、外包装保护层均通过真空镀膜技术制备。

图片

LIPON薄膜全固态电池结构及制备流程

图片

LIPON薄膜全固态电池量产工艺及改进

小结

当前固态电池已成为各国角逐的热点技术,固态电池所使用的固体电解质本身需要相对复杂的合成或处理工艺,固体电解质自身的性质及其和电极的理化相容性不但影响着电池材料体系在科学角度的构建,也影响着其工程化进程。固态电池未来需要继续提升电极和电解质材料的综合性能,设计新型集流体/电极/电解质复合结构,发展新型制造工艺和装备,逐步推进电池制造技术的提升。

固态电解质成膜及电池装配工艺

本文从制造工艺出发,详细综述全固态电池制造的核心:固体电解质的成膜工艺以及大尺寸全固态电池的集成工艺。

1 固体电解质成膜工艺

固体电解质膜为全固态电池独有结构,取代了液态电池的隔膜和电解液,主体为固体电解质。固体电解质的成膜工艺是全固态电池制造的核心。不同的工艺会影响固体电解质膜的厚度和离子电导率,固体电解质膜过厚会降低全固态电池的质量能量密度和体积能量密度,同时也会提高电池的内阻;固体电解质膜过薄机械性能会变差,有可能引起短路。

根据对全固态电池的性能要求选择合适的成膜工艺,得到所需厚度和离子电导率的固体电解质膜。固体电解质的成膜工艺根据是否采用溶剂分为湿法工艺和干法工艺。

1.1 湿法工艺

湿法工艺成膜操作简单,工艺成熟,易于规模化生产,是目前最有希望实现固体电解质膜量产的工艺之一。按照载体不同,湿法工艺可分为模具支撑成膜、正极支撑成膜以及骨架支撑成膜。

1.1.1 模具支撑成膜

模具支撑成膜常被用于制备聚合物电解质膜及复合电解质膜,将固体电解质溶液倾倒在模具上,随后蒸发溶剂,从而获得固体电解质膜,通过调节溶液的体积和浓度来控制膜的厚度。需要注意的是,为了保证固体电解质膜可以完整的从模具中分离,电解质膜需具备较大的厚度以提供足够的机械强度。

1.1.2 正极支撑成膜

正极支撑成膜常用于无机电解质膜及复合电解质膜的制备,将固体电解质溶液直接浇在正极表面,蒸发掉溶剂后,在正极表面形成固体电解质膜。与模具支撑相比,正极支撑可以获得更薄的固体电解质膜和更好的界面接触。

图片

1.1.3 骨架支撑成膜

骨架支撑常用于复合电解质膜的制备,将固体电解质溶液注入骨架中,蒸发掉溶剂后,形成具有骨架支撑的固体电解质膜。按照是否具备离子传输能力将骨架分为惰性骨架和活性骨架。

图片

图片

湿法工艺的要点是粘结剂和溶剂的选择,特别是对硫化物固体电解质。理想的溶剂应具有低沸点,便于蒸发,同时应该对固体电解质具备良好的溶解性和化学稳定性。对于聚合物电解质,通常选用乙腈、丙酮等溶剂。而大多数硫化物不能用极性溶剂处理,需要选择非极性溶剂,如甲苯、二甲苯等。粘结剂会增加固体电解质膜的阻抗,需通过平衡离子电导率和粘结强度来控制粘结剂的添加量。

1.2 干法工艺

湿法工艺中采用的溶剂可能存在毒性大,成本高的缺点,且残留的溶剂会降低固体电解质膜的离子电导率。干法工艺是将固体电解质与聚合物粘结剂分散成高粘度混合物,然后对其施加足够的压力使其成膜。

需注意的是,干法工艺形成的固体电解质膜通常厚度偏大,会降低全固态电池的能量密度。但干法工艺不采用溶剂,直接将固体电解质和粘结剂混合成膜,不需要烘干,在成本上更加具有优势;同时干法成膜无溶剂残留,可获得更高的离子电导率。

2 全固态电池装配工艺

固态电池通常采用软包的方式集成。与液态电池生产相比,不需要电解液注入工艺,可能不再需要耗时耗力的化成过程。目前全固态电池的尚处于基础研究阶段,大多数试验验证都基于扣式电池(图4a)和模具电池(图4b)。聚合物电池通常都可以制备成扣式电池,而采用无机电解质的全固态电池通常利用模具电池进行实验,使用粉末压制法制备致密的固体电解质圆片,与正极和负极层贴合并施加压力以确保良好的机械接触。想要获得实际应用的全固态电池,必须开发适配的规模化集成工艺。

图片

从工艺成熟度、成本、效率等方面考虑,叠片可以通过正极,固体电解质膜和负极的简单堆叠实现电池各组件的集成是最适用于全固态电池制备的工艺。本文按照裁片与叠片的先后顺序将叠片工艺分为分段叠片和一体化叠片。分段叠片(图5a)沿用液态电池叠片工艺,将正极、固体电解质层和负极裁切成指定尺寸后按顺序依次叠片后进行包装;一体化叠片(图5b)是在裁切前将正极,固体电解质膜和负极压延成3层结构,按尺寸需求将该3层结构裁切成多个“正极-固体电解质膜-负极”单元,并将其堆叠在一起后进行包装。需注意,由于裁切前固体电解质膜已同正负极贴合,裁切时易发生正负颗粒的混合,通过该方法制备的全固态电池,可能出现短路风险。图片

对于全固态电池而言,堆叠一起的各组件之间势必会存在各种各样的界面问题。针对聚合物全固态电池,可以通过加热解决聚合物电解质膜同正负极间的界面电阻;而对于氧化物和硫化物电解质膜,则需要进行压制处理改善固体电解质与电极之间的机械接触。将正极、固体电解质膜、负极堆叠包装为软包电池。施加真空将其密封,通过等静压机将对电池施加490MPa的压力(图6),压制后固体电解质膜厚度由40μm进一步减少至30μm,并实现1000次稳定循环。

图片3 总结

本文通过对固体电解质-固体电解质膜-全固态电池的全流程工艺阐述,为后续大尺寸全固态电池的规模化生产提供指导。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片